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Abstract. In this paper we define multisections of intervals that yield sharp lower bounds in
branch-and-bound type methods for interval global optimization. A so called ‘generalized kite’,
defined for differentiable univariate functions, is built simultaneously with linear boundary forms
and suitably chosen centered forms. Proofs for existence and uniqueness of optimal cuts are given.
The method described may be used either as an accelerating device or in a global optimization
algorithm with an efficient pruning effect. A more general principle for decomposition of boxes is
suggested.

Key words: Centered form, global optimization, interval branch-and-bound method, optimal
lower bound, optimal multisection.

1. Introduction

This paper investigates the question of bisections and more generally of multi-
sections in branch-and-bound methods for global optimization based on interval
arithmetic and centered forms of order one. More precisely we consider problems
of the type

�Pb 1� min
x∈X

f �x�

where f is a differentiable function over the real interval X. The global minimum
is denoted as f ∗ and x∗ is a global minimizer. Interval arithmetic is used mainly
to get an enclosure for the derivative of the function f .
The basic principle of branch-and-bound methods of global optimization con-

sists in splitting intervals into smaller one’s so that as many subintervals as
possible are removed and then searching for the minimum over the remaining
subsets. It is clear that the cutting points play an important role in the convergence
of such algorithms. Our main target is to define rules for the choice of cutting
points to get the best decomposition of any box Y ⊆X. More precisely, mak-
ing use of information available during the current step, we search splittings that
maximize the lower bound of f ∗ in the next step and, as much as possible, with
a reduced additional cost. It appears that, for a global optimization algorithm, the
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optimal choice relies upon a principle of anticipation which takes into account
the underlying bounding method.
Optimal multisections follow from a geometrical interpretation of a general-

ization of kite inclusion functions [23], the aim of which is initially to get lower
bounds of f . Moreover if we consider an increasing number of sections over
an interval X we get a strictly monotone increasing sequence of lower bounds
converging towards inff �X�. From this sequence one can built an optimization
algorithm but in spite of interesting theoretical properties its numerical efficiency
is not proved. This last algorithm can be seen as an extension of classical Lip-
schitz optimization methods. In this paper we focus our attention mainly on the
optimality of cutting points in multisections. Then our method can be used as an
accelerating device for branch-and-bound algorithms. In the sequel, the bound-
ing method for global optimization uses centered forms of order one and linear
boundary value forms. The same principle may also be applied to other algo-
rithms. The organization of the paper is as follows. In Section 2 we recall how
linear centered forms and linear boundary value forms may be used to get lower
bounds. We also discuss the principle of the kite algorithm [11, 12]. In this case,
looking at an optimal kite, an a posteriori interpretation in terms of optimal
bisection is given.
Section 3 is devoted, by extending the previous results, to the search of optimal

n-sections with the so-called ‘generalized kites’. Then optimal cutting points are
obtained from a nonlinear system of equations. Theoretical results about existence,
uniqueness, convergence of optimal multisections and some other properties are
gathered in Section 4. The proof of existence relies on fixed point theory and affine
homotopy. Finally a more general rule for decomposition of boxes is suggested
before conclusion.
The following notations and definitions are used:

• � is the set of reals.
• If X is a finite set, cardX is the number of elements of X.
• If �a	b�∈�2 then

�a	b�=
x∈�� a�x�b�	 �a	b�=
x∈�� a<x<b��

• If A⊂�n, A �=∅, then w�A�= sup
	x−y	� �x	y�∈A×A�, where 	·	 is the
Euclidean norm on �n.

• If � is a map from X to Y and if B⊂Y , then

�−1�B�=
x∈X� ��x�∈B��

• Let� be an open bounded subset of�n, let ��=
�\� be the boundary of�
and let �� 
�−→�n be a continuous map. Then, for a given y∈�n\�����,
one can define the Brouwer degree, or topological degree, of � with respect to
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� and y, denoted deg��	�	y�. This integer valued function has the following
properties:

deg��	�	y� �=0�⇒y∈����
deg��−y	�	0�= deg��	�	y�
deg�Id	�	y�= 0 if y�
�	

and 1 if y∈�; where Id� 
�→�n	 Id�x�=x. Let h� 
�×�0	1�→�n be
a continuous map, if y�h���×�0	1�� then h is said to be an admissible
homotopy with respect to y, and we have: deg�h0	�	y�=deg�h1	�	y� where
ht� 
�→�n is defined by ht�x�=h�x	t�. See, for instance, [3, 15, 22].

2. Kite and Linear Forms

2.1. LINEAR CENTERED FORMS

In interval branch-and-bound methods of global optimization centered forms,
Taylor forms are basic tools for finding the bounds or range enclosures of func-
tions. Our study, in this paper, is limited to order one and to the mean value
theorem. Linear boundary value forms correspond to the particular case where
expansions are centered at extremal points of the interval X. For standard interval
arithmetic as well as function evaluations one can refer to Alefeld and Herzberger
[1]. Linear boundary value forms (LBVF in the sequel) for univariate functions
may be found in Neumaier [14] and an extension to the multivariate case in [13].
General branch-and-bound methods for global optimization of interval type are
extensively developed in [8, 10, 20].
In problem (Pb 1) let f ∈C1�X� where X= �a	b� and c∈X. Let us suppose

that G= �L	U � encloses the range of the derivative f ′�X� and L<0<U . Then
linear centered forms and linear boundary forms give the following enclosures
for the range of f

f �X�⊂Fc�X��= �z
cf
	z̄cf � and f �X�⊂Flbvf�X	G��= �zlbvf	z̄lbvf�

where z
cf
�=min
f �c�+U�a−c�	 f �c�+L�b−c��, z̄cf �=max
f �c�+U�b−c�,

f �c�+L�a−c�� and zlbvf �= infX max
f �a�+L�x−a�	 f �b�+U�x−b��	 z̄lbvf �=
supXmin
f �a�+U�x−a�	 f �b�+L�x−b��.

2.2. KITE ENCLOSURES

After a splitting of X= �a	b� into X1= �a	c� and X2= �c	b�, linear boundary
value forms give the enclosures Flbvf�X1	G1� and Flbvf�X2	G2� where f

′�X1�⊂G1

and f ′�X2�⊂G2. Then a new lower bound for the function f is zK �=min
z1	z2�
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and the upper bound is z̄K �=max
z̄1	z̄2�. In the following we assume that G1=
G2 �=G. One can see (Figure 1a) that the graph of the function f is enclosed by
the two parallelograms linked by the point C �=�u	f �u��. This figure K�X	u	G�
is a so-called ‘Kite’ with center C. FK�X��= �z

K
	z̄K� encloses f �X�, the range

of the function f . Solving problem (Pb 1), we are interested in a center C
which gives the best lower bound obtained for z∗

K
=maxu∈�a	b�
zK�. Such a point

C∗=�u∗	f �u∗�� and the associated kite K�X	u∗	G� are said to be optimal and a
theorem for existence and uniqueness is given. The purpose of the Kite algorithm
[11, 12, 23], is to get this optimal center. We give here some properties of kites.
Proofs and other properties may be found in [23].

1. f �X�⊆FK�X�, for each K
2. FK�X�⊆Flbvf�X�, for each K and G fixed
3. w�FK�X��→0 when w�X�→0
4. if Y ⊆Z	 Z⊆X and F ′�Y �⊆F ′�Z� where F ′ is any inclusion function of the
derivative f ′ then FK�Y �⊆FK�Z�

5. K�X	u	G1�⊆K�X	u	G2� if G1⊆G2.

2.3. A POSTERIORI INTERPRETATION OF AN OPTIMAL KITE

In standard interval branch-and-bound methods with bisection the cutting point
is mid�X�=�a+b�/2 which is not necessarily an optimal choice even for the
symmetrical case �L�=U , encountered, for example, with Lipschitz functions.
Suppose now that X= �a	b�, X1= �a	u� and X2= �u	b�. Let G be the same
interval enclosure for the range of the derivatives f ′�X1� and f

′�X2�. Suppose
that linear boundary value form is used to get lower bounds for the function over
X1 and X2. Then, if one searches the cutting point which induces the best lower
bound, one finds the point u∗ that yields the optimal kite over X.
Clearly, the optimal cutting point must change with the underlying bounding

technique. For example we could obtain another optimal cutting point u∗
B with

the optimal centered form of Baumann [2, 21]. In the next section we consider
only lower bounds from linear boundary value forms and optimal kites. The same
principle will be applied to multisections as well.
The cutting points obtained above are computed for minimization problems,

the optimal cutting points would be different for maximization problems and also
if the target is the tightest range enclosure for the function f .
Lipschitz optimization has been extensively studied by Pinter [16], Evtushenko

[5, 6] Piyavskii [17] and others. A complete survey by Hansen and Jaumard is in
the Handbook of Global Optimization edited by Horst and Pardalos [9].
Here, interval analysis is used mainly to obtain enclosures for the range of

the derivative f ′�X�, denoted by F ′�X�. This can be done by any method of
automatic differentiation with interval arithmetic [7, 18].
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Figure 1a.

Figure 1b.
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3. Multisections and Generalized Kites

3.1. GENERALIZED KITES

In the previous sections a kite is defined as a two-section figure with a single
center C. We are now interested, for global optimization problems, in figures
with n-sections, n�3.
For a given function f , let a<u1<u2<b and u=�u1	u2�

t. We denote by
K�1��X	c	G��=K�X	c	G� a kite as defined in Section 2. Then we define
K�2��X	u	G��=K�1���a	u2�	u1	G�∪K�1���u1	b�	u2	G� as we can see on Figure
1b. More generally let u=�u1	u2	���	up�

t where a<uk<b and uk<uk+1 for all k.

DEFINITION 1. Let u0=a and up+1=b, the geometrical figure associated to
K�p��X	u	G��=∪p

j=1K
�1���uj−1	uj+1�	uj	G� is called a ‘p-center kite’. This figure

is formed with p+1-sections linked by the p centers (uk	f �uk�� and it can be
viewed as a generalized kite. Each section is a parallelogram, denoted by K�p�

k

resulting from the application of the LBVF method over Xk= �uk−1	uk�.
For X	f and G fixed, a p-center kite (or a p-kite, denoted by K�p��u� for

brevity) is related to a splitting of X into p+1-sections.
These generalized kites have interesting properties for range enclosure of func-

tions and particularly for lower bounds in global minimization algorithms. Some
of these properties are:

1. 
�x	f �x��	x∈X�⊆K�p��X	u	G� for any p�1.
2. if G1⊆G2 then K�X	u	G1�⊆K�X	u	G2�.
3. K�2��X	u	G�=K�1��X	u1	G�∩K�1��X	u2	G�.
4. let u be defined as above and v=�v1	v2	���vq�

t with vi �=vj for any
i and j, then K�p+q��X	s	G�=K�p��X	u	G�∩K�q��X	v	G�, where s=
�s1	s2	���	sp+q�

t, sk=ui or vj and sk<sk+1 for each k.
5. let FK�r��X� �= �z�K�r��	z̄�K�r��� be the inclusion function related to the
kite K�r��X	u	G� with z�K�r�� �=min
z�r�j 	j=1	2	���	r+1� and z̄�K�r��=
max
zj

�r�	j=1	2	���	r+1�. Then we have the inclusion f �X�⊆FK�p+q��X�⊆
FK�p��X�∩FK�q��X� for any p and q.

In the next section we will discuss how to use these generalized kites to get
sharper lower bounds for a function f .

3.2. OPTIMAL p-KITES

Our aim is now to determine the ‘best’ p-kite when f 	X, and G are given.
The question is: can we find a p-kite which gives the best lower bound of the
function f ? If this one exists, it is defined by u∗=�u∗

1	u
∗
2	���	u

∗
p� vector of the p

centers such that z�K�p��u∗��=supuz�K�p��u�� and this p-kite is said optimal for
minimization problem. An optimal u∗ satisfies

z
�p�
1 =z

�p�
2 =···=z

�p�
p+1
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with

z�p�
j

=�Uf �u
�p�
j−1�−Lf�u

�p�
j �+�u

�p�
j −u

�p�
j−1�LU�

1
U−L

	 j∈
1	2	���	p+1�
(2)

and u0=a, up+1=b.
Let M and N be the tridiagonal square matrices of order p defined as follows:

mi	i �=−2 i=1	2	���	p and mi+1	i=mi	i+1 �=1 i=1	2	���	p−1
ni	i �=−�1/L+1/U� i=1	2	���	p
ni+1	i �=1/L and ni	i+1 �=1/U for i=1	2	���	p−1�

Let v=�f �u1�	f �u2�	���	f �up��
t and h=(−a+ f �a�

L
	0	���	0	−b+ f �b�

U

)t
. Then

u∗ is a solution of the nonlinear system Mu=Nv+h. In Section 4, we prove that
this equation has one solution and that a realistic sufficient condition yields its
uniqueness.

3.3. A POSTERIORI INTERPRETATION OF OPTIMAL p-KITES

The first good news is the existence and uniqueness of a p-kite which yields
the best lower bound for f . Moreover if we are looking at a geometrical
interpretation of the optimal p-kite (Figure 2), we see that u∗1	u

∗
2	���	u

∗
p may be

Figure 2.
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considered as optimal cutting points for a p+1-section of X into p+1 subinter-
vals X∗

1 	X
∗
2 	���	X

∗
p+1 when lower bounds are computed by linear boundary value

form and G is a same range enclosure for f ′�Xk� for each k. Thus the previous
interpretation of a standard kite is generalized to any optimal p-kite.
Another good news is that z�K�p��u∗�� converges towards f

∗ when p→+�.
For that reason optimal kites may be included in deterministic algorithms for
optimization.
Theoretical results and proofs are gathered in the next section.

4. Theoretical Results

We shall study, without loss of generality, the following ‘canonical’ case:

f ∈C1��0	1��	 f �0�=0	 f ′��0	1��⊆G= �L	U � and L<0<U�

Let 2= 1
L
, 3= 1

U
and 3�n, and assume that the tridiagonal matrices M and N

defined in Section 3.2 are associated with linear maps An and Bn in �n for the
basis �=
e1	e2	���	en� where �ei�j=1 if i=j and 0 else. The case n=2 may be
studied directly.
The question of existence of an optimal multisection amounts to:
�Pn�: can we find x=�x1	���	xn�∈ �0	1�n such that 0<x1< ···<xn<1 and

An�x�=Bn��f �x1�	���	f �xn���+�0	���	0	3f �1�−1�?
Let 6n=
x∈�0	1�n� x1<x2< ···<xn� the open set in �

n which has for closure
the n-simplex 6n=
x∈ �0	1�n� x1�x2� ···�xn�, �6n=
x∈6n ��x1=0� or �xn=
1� or ��∃k��k∈
1	���	n−1� and xk=xk+1����.
Let 7� 6n→�n be defined with 7�x�=Bn��f �x1�	���	f �xn���+�0	���	0,

3f�1�−1�−An�x�. Then �Pn� has a positive answer if and only if6n∩7−1�
0�� �=
∅. The first straightforward but useful result is the
LEMMA 1. Let �a	b�∈ �0	1�2 and a<b, then:

(1) 3�f �b�−f �a���b−a and 3�f �b�−f �a��=b−a if and only if f ′��a	b��=

U�

(2) −2�f �b�−f �a���a−b and −2�f �b�−f �a��=a−b if and only if
f ′��a	b��=
L�.

Proof. We have f �b�−f �a�=∫ b

a
f ′�t�dt and since f ′��0	1��⊆ �L	U � we get

the classical inequalities L�b−a��f �b�−f �a��U�b−a�. Then the inequalities
in (1) and (2) are the result of the fact that L<0<U . Let any 8 ∈ �a	b� such
that 9=U−f ′�8�>0	 f ′ being continuous there is an interval J⊂ �a	b� with 8 ∈
J	 l=w�J�>0 such that f ′�t��U−9/2 if t∈J , then f �b�−f �a�=∫

J
f ′�t�dt+∫

�a	b�\J f
′�t�dt��U−9/2�l+U�b−a−l�<U�b−a� and thus, equality in (1) is

valid if and only if f ′��a	b��=
U�. The same argument may be used for (2).

LEMMA 2. Let s=�s1	���	sn�∈6n, then 7�x� �==�x−s� for every �x	=�∈�6n×
�−�	0�.
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Proof. Let x∈
6n, we have

71�x�=−2f�x1�+3�f �x2�−f �x1��+2x1−x2	

7k�x�=−2�f �xk�−f �xk−1��+3�f �xk+1�−f �xk��−xk−1+2xk−xk+1

for k=2	3	���	n−1	 and
7n�x�=−2�f �xn�−f �xn−1��+3�f �1�−f �xn��−xn−1+2xn−1

If x∈�6n we have the following possibilities:

1. If x1=0 then f �x1�=f �0�=0 thus 71�x�=3f�x2�−x2�0 according to
Lemma 1.
Hence 71�x� �=−=s1 if =<0 since s1>0	 and then 7�x� �==�x−s��

2. Let k∈
2	���	n−2� such that xk=xk+1. It follows from Lemma 1 that 7k�x�−
7k+1�x�=−2�f �xk�−f �xk−1��+xk−xk−1−3�f �xk+2�−f �xk��+xk+2−xk�
0. But then =�xk−sk�−=�xk+1−sk+1�==�sk+1−sk�<0 if =<0 and finally
7�x� �==�x−s� if =<0.

3. If xn=1 then 7n�x�=−2�f �1�−f �xn−1��+1−xn−1�0 by Lemma 1, but
=�xn−sn�==�1−sn�<0 if =<0, and again 7�x� �==�x−s� if =<0.

4. If 0<x1=x2, we get by Lemma 1 71�x�−72�x��0 and =�x1−s1�−=�x2−
s2�==�s2−s1�<0 if =<0; thus 7�x� �==�x−s� if =<0.

The case xn−1=xn<1 is treated similarly, and Lemma 2 is proved.

THEOREM 1. 0∈7�6n�.

Proof. Suppose 0�7��6n�, let the homotopy h� 6n×�0	1�→�n be defined
by h�x	t�=ht�x�=�1−t�7�x�+t�x−s� with s∈6n. Obviously h is con-
tinuous since 7 is continuous; moreover 0�h��6n×�0	1�� because other-
wise we could find �v	8�∈�6n×�0	1� such that �1−8�7�v�=−8�v−s�, but
0�7��6n� according to the assumption thus 8 �=0 and �6n∩6n=∅, hence
8 �=1, then 8 ∈�0	1� and 7�v�=−�8/�1−8���v−s� which is impossible by
Lemma 2. This proves that h is an admissible homotopy related to 6n and
0; we have deg�7	6n	0�=deg�h0	6n	0�=deg�h1	6n	0�, but h1�x�=x−s=
�Id−s��x�, so deg�h1	6n	0�=deg�Id−s	6n	0�=deg�Id	6n	s�=1 since s∈6n.
Hence deg�7	6n	0� �=0 and 0∈7�6n�. If 0∈7��6n� then finally 0∈7�6n�which
completes the proof.
It should be noted that Theorem 1 does not give a complete answer to �Pn�

because if 0∈7��6n� we cannot conclude whether 0∈7�6n� or not. Actually
we have

THEOREM 2. If f ′−1�
L	U�� does not contain any non empty open interval with
extremity 0 or 1 �∗�, then 7−1�
0��⊂6n, and thus Theorem 1 implies a positive
answer to �Pn�.
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Proof. We first prove that 7�t	t	���	t� �=0 for every t in �0	1�. This is straight-
forward from Lemma 1: let t∈�0	1�	 then 71�t	t	���	t�=−2f�t�+t=0 and
from Lemma 1 f ′��0	t��=
L� and �0	t�⊂f ′−1�
L�� which is impossible. For
t=0 and t=1 the proofs are similar. Now from this result, if the assumption
of Theorem 2 is satisfied, we prove that u=�u1	���	un�∈�6n∩7−1�
0�� implies
card
u1	���	un��2. We must consider the cases u1=0	 un=1.
(i) If u1=0	 card
u1	���	un��2 we can find p∈
2	���	n� such that up−1=0<

up; then, either p=2 and 71�u�=0, hence by Lemma 1 �0	u2�⊂f ′−1�
U��
which contradicts �∗�, or p>2 and 7p−1�u�=0, which is impossible for the
same reason. Therefore u1>0, and by Lemma 1, u1<1 and finally u1∈�0	1�.

(ii) If un=1, we can find p∈
1	���	n−1� such that up<up+1=1 and by Lemma 1
f ′��u	1��=
L� which contradicts �∗�. Then the last case to be examined is:
�u1	un�⊂�0	1� and u1<un.

Let p=min
k∈
1	���	n−1� � uk=uk+1�. Looking at the different possibilities
p=1	 p=n−1	 uk=up for all k>p, and uk=uk+1=···=uq−1<uq with the
same previous proof, from Lemma 1 we find in each case a contradiction with �∗�.
This completes the proof of Theorem 2.

Remarks. Condition �∗� is satisfied when L<f ′�x�<U for x∈�0	1� which is
often the case if G is computed by interval arithmetic with directed rounding.
For n=2 trivial modifications in previous proofs yield similar results.

THEOREM 3. If f ′−1�
L	U�� has no interior point �∗∗� is fulfilled, then, for each
integer n�2, there exists one and only one u∈6n such that 7�u�=0; moreover
u∈6n.
Proof. (1) we prove first that if �u	v�∈�7−1�
0���2 then �u1=v1��⇒�u=v�.

Actually, if ui=vi for i=1	2	���	p then 7p�u�−7p�v�=0 and up+1=vp+1 by
Lemma 1 and �∗∗� which induces a contradiction if p�n−1.
(2) If �u	v�∈�7−1�
0���2 then u1<v1�⇒un>vn. We have

∑n
k=1�7k�u�−

7k�v��=0, since u1<v1 we get from Lemma 1 and �
∗∗�: 3�f �v1�−f �u1��+u1−

v1<0, hence −2�f �un�−f �vn��+un−vn>0 and by Lemma 1 un>vn.
For one such �u	v� with u �=v, we can suppose by (1) that u1<v1, and then

71�u�−71�v�=0 which implies, again from Lemma 1, v2>u2; let 2�p�n−1
and uk<vk for k∈
1	���	p�, then

∑p
k=1�7k�u�−7k�v��=0 yields vp+1>up+1.

And finally by induction un<vn, which is impossible by Lemma 2.
We can now give a complete answer to the problem of optimal multisection

for LBVF minimization:

(MAIN) THEOREM 4. Let X= �a	b�⊂�	 let f ∈C1�X� such that f ′�X�⊂
�L	U � with LU <0, and f ′−1�
L	U�� has no interior point, then:
For each integer n�2 there is a unique point u�n�∈Xn such that

7�n��u�n��=0 where 7�n� � 
x∈Xn �x1�x2� ···�xn�−→�n is given by 7�n��x�=
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Bn��f �x1�	���	f �xn���+�2f �a�−a	0	���	0	3f �b�−b�−An�x� moreover: a<
u
�n�
1 <u

�n�
2 < ···<u�n�n <b.

Proof. This result is a straightforward generalization of Theorem 3. The choice
of �0	1� instead of �a	b� with f �0�=0 does not change the proof.

COMPARISON OF u�n� AND u�n+1�

One suppose that the assumptions of Theorem 3 are fulfilled.

PROPOSITION 1. For any integer n�2 the following inequalities hold: for any
k∈
1	2	���	n�	 u�n+1�k <u

�n�
k and u�n�n <u

�n+1�
n+1 .

Proof. (1) u�n�1 �=u
�n+1�
1 otherwise from the proof of Theorem 3 part 1) we

have u�n�=�u
�n+1�
1 	���	u�n+1�n � and 7�n�

n �u�n��=0=7�n+1�
n �u�n+1�� and then 3�f �1�−

f �u
�n+1�
n+1 ��−1+u

�n+1�
n+1 =0 which is impossible according to Lemma 1 and �∗∗�.

(2) n�2 implies that u�n+1�1 <u
�n�
1 .

By (1) we have u
�n+1�
1 <u

�n�
1 . If we assume that u

�n�
1 <u

�n+1�
1 for some

n then by proof of Theorem 3, we have: �for each k��k∈
1	���	n��⇒
u
�n�
k <u

�n+1�
k � such that: 0=∑n

k=1�7
�n�
k �u�n��−7

�n+1�
k �u�n+1��� which implies that

3�f �1�−f �u
�n+1�
n+1 ��+u

�n+1�
n+1 −1>0, by the fact that u�n�n <u�n+1�n and u�n�1 <u

�n+1�
1

yields: −2�f �u�n�n �−f �u�n+1�n ��+u�n�n −u�n+1�n <0 and −3�f �u�n�1 �−f �u
�n+1�
1 ��+

u
�n�
1 −u

�n+1�
1 <0, but this is inconsistent with Lemma 1 and �∗∗�.

u�n�n <u
�n+1�
n+1 is proved as in Theorem 3 with 0=∑n

k=1�7
�n�
k �u�n��−7

�n+1�
k ×

�u�n+1���.

PROPOSITION 2. z�n�∗ <z�n+1�∗ .
Proof. Again with assumptions of Theorem 3, we have z�n�∗ =�−3f�u�n�1 �+

u
�n�
1 �/�2−3� and z�n+1�∗ −z�n�∗ =�−3�f �u�n+1�1 �−f �u

�n�
1 ��+u

�n+1�
1 −u

�n�
1 �/�2−3�.

But u�n+1�1 <u
�n�
1 by Proposition 1 and by Lemma 1, z�n�∗ −z�n+1�∗ <0, because

2−3<0.

PROPOSITION 3. z�n�∗ −→f ∗ when n−→+�.
Proof. �z�n�∗ �n�2 is an increasing sequence by Proposition 2, obviously bounded

by minf �X�, hence convergent. If z denotes the limit of the sequence, then
z�minf �X�.
Let ?n=min
u�n�k+1−u

�n�
k @k=0	1	���	n� where u�n�0 =a and u

�n�
n+1=b. It is an

obvious geometrical fact that a number A>0, function only of L and U , exists such
that: w�K�n�

k �u∗���A	�u�n�k 	 f �u
�n�
k ��−�u

�n�

�k+1�	 f �u
�n�

�k+1���	 thus w�K�n�
k �u∗���

A�1+�L−U�2�1/2�u
�n�
k+1−u

�n�
k �. Let k�n� such that ?n=u

�n�

k�n�+1−u
�n�

k�n�, then:
w�K

�n�
k �u∗���A�1+�L−U�2�1/2?n�A�1+�L−U�2�1/2�b−a�/�n+1�, hence

f �u
�n�

k�n��−z�n�∗ �w�K
�n�

k�n��u∗�� and minf �X�−z�n�∗ �A�1+�L−U�2�1/2�b−a�/
�n+1�−→0 when n−→+�.
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There is now to prove that the multisection resulting from the main theorem is
really the optimal one related to LBVF minimization. Indeed if v=�v1	���	vn�∈
�a	b�n is such that v1�v2� ···�vn then if p=card
v1	���	vn�, we can consider the
p-center kiteK�p��v∗�. If we assume now that z

�p�
k �z�p�∗ for each k then, as in proof

of Proposition 1 we must have: v1�u
�p�
1 	v2�u

�p�
2 	���	vp�u�p�p . In fact we assume

that 
v1	���	vn�=
v1	���	vp�, with a new numbering if necessary. According to
this result we get vp<u�p�p �⇒z�p�

p
<z�p�∗ which is impossible, therefore: u�p�p �vp,

thus u�p�p =vp and for analogous reasons u
�p�
k =vk for each k∈
1	���	p�. Then

the proof is achieved from Proposition 2 because z�p�∗ �z�n�∗ . Proposition 1 and
Proposition 2 remain true for any interval X= �a	b� without any assumption
about f �a� and finally we have proved the following:

(MAIN) THEOREM 5. Let X= �a	b� a proper interval of �	 f ∈C1�X� such
that f ′�X�⊆ �L	U �	 LU <0. If f ′−1�
L	U�� has no interior point, then the fol-
lowing holds:
For every integer n�n�2�, there is one and only one n-center kite related to

LBVF minimization K�n�
∗ =K�n��X	u∗	G� which satisfies

(1) a<u∗1< ···<u∗
n<b and z�n�k =z�n�∗ for each k∈
1	���	n�.

(2) K
�n�
∗ is the best n-center kite related to LBVF minimization.

Moreover we have: z�n�∗ <z�p�∗ if n<p and z�n�∗ −→f ∗ when n−→+�.

Not only does (Main) Theorem 5 bring existence and uniqueness of an opti-
mal multisection but it also yields, from a recursive computation of the sequence
�K

�n�
∗ �, a new algorithm for solving a global optimization problem with its opti-

mizers, since at each step we get a narrower enclosure for f ∗.
The following properties may be used for the computation of the centers of

optimal n-kites.

PROPOSITION 4. The centers �v∗k	 f �v
∗
k�� are enclosed inK

�n�
∗ and every section

K
�n�
k∗ contains one and only one center of K�n+1�

∗ .
Proof. The centers of K�n+1�

∗ are points of graph�f �X�� which is enclosed in
any kite and therefore in K�n�

∗ . The number of sections K
�n�
k∗ of K�n�

∗ is equal to
the number of centers of K�n+1�

∗ . Then if two centers of K�n+1�
∗ are in the same

section of K�n�
∗ , one section K

�n�
j∗ of K�n�

∗ does not contain any center of K�n+1�
∗ .

Let C∗
i =�v∗i 	 f �v

∗
i ��∈K�n�

j−1∗ and C
∗
i+1=�v∗i+1	 f �v

∗
i+1��∈K�n�

j+1∗.
The lowest point of K�n+1�

∗ in �ui	ui+1� of coordinates �x∗i 	z
�n+1�
∗ � is such

that z�n+1�∗ <z�n�∗ , which is in contradiction with Proposition 2. Actually, z
�p�
k∗ <

z�p�∗ for every k and p, moreover if u∗ is the vector of the abscissa of cen-
ters of K�n�

∗ 	 �U−L��z
�n+1�
i∗ −z

�n�
j∗ �=U�f �v∗i �−f �u∗

j−1��−L�f �v∗i+1�−f �u∗
j ��+

LU��v∗i+1−u∗
j �−�v∗i −u∗

j−1��<0 because f
′�X�⊆ �L	U �	 v∗i+1>u∗

j and v
∗
i <u∗

j−1.
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The result is a fortiori true if a section of K�n�
∗ contains more than two centers of

K
�n+1�
∗ .
The next result gives complementary information about the sequence �K�n�

∗ �
and completes Proposition 1.

PROPOSITION 5. Let X= �a	b�, let K�n�
∗ and K�n+1�

∗ be two optimal consecutive
kites, let �x∗�p�i 	 z�p�∗ � be the lowest point of K�p�

∗ 	 i=1	���	p+1 and assume
that the condition �∗∗� of Theorem 3 is satisfied. Then the cutting points of K�n�

∗
separate the cutting points of K�n+1�

∗ :

�∗∗∗� a< ···<u
∗�n+1�
i <u

∗�n�
i <u

∗�n+1�
i+1 < ···<b�

Moreover �x∗�n+1�i 	 z�n+1�∗ ��K�n�
∗ and �∗∗∗∗� x∗�n+1�i <x

∗�n�
i <x

∗�n+1�
i+1 	 i=1	���	n.

Proof. �∗∗∗� is straightforward from Proposition 4 because any section of
K

�n�
∗ delimited by two consecutive centers contains a single center of K�n+1�

∗ . If
�x

∗�n+1�
i 	 z�n+1�∗ � is inside K�n�

∗ , this one must contain at least two centers of K
�n+1�
∗ ,

which is excluded. Inequalities �∗∗∗∗� may be verified directly: x�n+1�i <x
�n�
i ⇐⇒

f �u
�n+1�
i−1 �−f �u

�n+1�
i �+Uu

�n+1�
i −Lu

�n+1�
i−1 <f�u

�n�
i−1�−f �u

�n�
i �+Uu

�n�
i −Lu

�n�
i−1⇐⇒

�u
�n+1�
i−1 −u

�n�
i−1��f

′�B�−L�+�u
�n+1�
i −u

�n�
i ��U−f ′�C��<0, but f ′�x�∈ �L	U � and

u
�n+1�
j <u

�n�
j . Therefore equality is impossible. The proof of the second inequality

is analogous.
These properties are very useful for the computation of optimal centers by

iterative interval methods.

EXAMPLE. We can see on Figures 1a and b optimal kites for bisection and
trisection when the function f �x�=x2−x with X= �0	2� and G= �−1	3�. In
Table 1 we give, for some values of n, lower bounds obtained with uniform mesh
and n−1-kites; moreover zlbvf=−1 and f ∗=−0�25.

5. Applications

5.1. ACCELERATING DEVICE

When optimal p-kites are used to determine optimal cutting points for p+1-
sections according to assumptions given in Section 3.2, then the integer p has a
fixed value. If p is too large, an accurate and guaranteed computation may be very

Table 1.

n 2 3 4 5 6 11

Uniform −0�75 −0�5556 −0�5625 −0�5200 −0�4722 −0�3719
n-Sections
Optimal −0�60 −0�4590 −0�3910 −0�3530 −0�3294 −0�2802
n-Sections
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expensive. Actually one must find the single solution of the nonlinear equation
7�u� �=Mu−ND−h=0. The nonlinearity is localized in D=�f �u1�	���	f �up��

t.
This equation can be solved by point or interval Newton-like methods.
For an iterative Newton-like method, if u is the current value, the next one u+

is computed by solving the linear system J7�u��u
+−u�=−7�u� where J7�u� �=

M−Ndiag�f ′�u1�	 f
′�u2�	���	f

′�up�. One iteration step involves p point evalu-
ations of �f �u�	f ′�u�� and the resolution of tridiagonal linear system of order p.
The amount of evaluations may be reduced by the use a parallel chord method.
For an interval method the fixed matrix A=M−GN could be used instead of
J7 . Moreover if the target is only an improved splitting, the optimal solution is
not necessary and a few number of iterations will be sufficient. Then the method
described above must be seen as an heuristic tool that may be added to other
accelerating devices for global interval optimization. The framework is then

Algorithm Selecting cutting points

Step 1. Let p have a fixed value. Select an interval Y = �y	ȳ� in the working list �. Let u+0 �=y and
u+p+1 �= ȳ.

Step 2. Apply a point or interval method that yields an approximate solution u+ of 7�u�=0.
Step 3. Delete Y from the working list �, continue the global optimization algorithm over the intervals

Yk= �u+k−1	u
+
k �, for k=1	2	���	p+1.

5.2. p-KITES AS GLOBAL OPTIMIZATION ALGORITHM

One first notices that using the lowest point of generalized kites as a bounding rule
is quite similar to saw-tooth methods in Lipschitz optimization. Thus our method
could be interpreted as a slight generalization of Lipschitz methods with �L� �=U .
But the main difference is that, for p-kites, the points u�n�k are not computed
sequentially but simultaneously to get z�p�∗ .
We know from Theorem 5 that z�n�∗ converges monotonically towards f ∗ when

n→+� and, according to Proposition 5, good initial values are available at
each step. Unfortunately the resolution of the non linear system has also an
increasing cost. We do not deal with this aspect of p-kites in this paper, but a
good strategy could consist in working with a fixed value of p over an interval Y ,
then computing enough accurately the optimal cutting points. Subsets Y ′

k which
cannot contain minimizers will be discarded by applying a pruning rule [12].
As can be seen in the example given Figure 2 for intervals X ′

k, the pruning
results from the intersection of the boundary of the p-kite with the horizontal line
t=minf �u�p�j �. The process will be applied again over the remaining subboxes
updating enclosures of the derivative for a better efficiency.

6. Conclusion

A new method for enclosing the graph of univariate real functions inside geomet-
rical figures, so called generalized kites, has been presented. This paper focuses
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principally on the cutting points of multisections. An algorithm is developed that
allows to define optimal multisections, for information available at the current
step, in interval branch-and-bound methods of global optimization using linear
under bounds. Theoretical results concerning existence, uniqueness and conver-
gence are given. As an immediate application of the method, the generalized kites
can be used as an accelerating device choosing better cutting points that are then
roughly localized. Thus a new rule can be combined with tools for selecting a
box or choosing a direction for splitting. These devices are built on properties
of the function and geometrical dimensions of the box, the rule defined in this
paper is closely related to the bounding technique. Another application would
be to use recursively p-kites building thus a branch-and-bound type algorithm of
global optimization but this point is not studied here.
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